LogoLogo
  • Welcome to Gretel!
  • Gretel Basics
    • Getting Started
      • Quickstart
      • Blueprints
      • Use Case Examples
      • Environment Setup
        • Console
        • SDK
      • Projects
      • Inputs and Outputs
      • Gretel Connectors
        • Object Storage
          • Amazon S3
          • Google Cloud Storage
          • Azure Blob
        • Database
          • MySQL
          • PostgreSQL
          • MS SQL Server
          • Oracle Database
        • Data Warehouse
          • Snowflake
          • BigQuery
          • Databricks
        • Gretel Project
    • Release Notes
      • Platform Release Notes
        • May 2025
        • April 2025
        • March 2025
        • February 2025
        • January 2025
        • December 2024
        • November 2024
        • October 2024
        • September 2024
        • August 2024
        • July 2024
        • June 2024
      • Console Release Notes
        • January 2025
        • December 2024
        • November 2024
        • October 2024
        • September 2024
        • August 2024
      • Python SDKs
  • Create Synthetic Data
    • Gretel Safe Synthetics
      • Transform
        • Reference
        • Examples
        • Supported Entities
      • Synthetics
        • Gretel Tabular Fine-Tuning
        • Gretel Text Fine-Tuning
        • Gretel Tabular GAN
        • Benchmark Report
        • Privacy Protection
      • Evaluate
        • Synthetic Quality & Privacy Report
        • Tips to Improve Synthetic Data Quality
        • Data Privacy 101
      • SDK
    • Gretel Data Designer
      • Getting Started with Data Designer
      • Define your Data Columns
        • Column Types
        • Add Constraints to Columns
        • Custom Model Configurations
        • Upload Files as Seeds
      • Building your Dataset
        • Seeding your Dataset
        • Generating Data
      • Generate Realistic Personal Details
      • Structured Outputs
      • Code Validation
      • Data Evaluation
      • Magic Assistance
      • Using Jinja Templates
  • Gretel Playground [Legacy]
    • Getting Started
    • Prompts Tips & Best Practices
    • FAQ
    • SDK Examples
    • Tutorials
    • Videos
    • Gretel Playground [Legacy] Inference API
    • Batch Job SDK
  • Reference
    • Gretel's Python Client
    • Gretel’s Open Source Synthetic Engine
    • Gretel’s REST API
    • Homepage
    • Model Suites
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Create Synthetic Data
  2. Gretel Data Designer

Building your Dataset

Create Tailored, High-Quality Synthetic Data

Data Designer offers powerful capabilities for generating various types of data with precise control. This guide provides an overview of the data generation process, which is broken down into two main phases:

  1. Seeding Your Data: Establishing the foundation for your synthetic data

  2. Generating Your Dataset: Creating, scaling, and exporting your synthetic data

The Data Generation Workflow

The typical Data Designer workflow follows these steps:

  1. Design Phase: Define your data model with appropriate columns and relationships

  2. Seed Phase: Add seed data to guide the generation process

  3. Preview Phase: Test your design with a small sample

  4. Batch Generation Phase: Scale up to create your full dataset

PreviousUpload Files as SeedsNextSeeding your Dataset

Last updated 1 month ago

Was this helpful?