LogoLogo
  • Welcome to Gretel!
  • Gretel Basics
    • Getting Started
      • Quickstart
      • Blueprints
      • Use Case Examples
      • Environment Setup
        • Console
        • SDK
      • Projects
      • Inputs and Outputs
      • Gretel Connectors
        • Object Storage
          • Amazon S3
          • Google Cloud Storage
          • Azure Blob
        • Database
          • MySQL
          • PostgreSQL
          • MS SQL Server
          • Oracle Database
        • Data Warehouse
          • Snowflake
          • BigQuery
          • Databricks
        • Gretel Project
    • Release Notes
      • Platform Release Notes
        • May 2025
        • April 2025
        • March 2025
        • February 2025
        • January 2025
        • December 2024
        • November 2024
        • October 2024
        • September 2024
        • August 2024
        • July 2024
        • June 2024
      • Console Release Notes
        • January 2025
        • December 2024
        • November 2024
        • October 2024
        • September 2024
        • August 2024
      • Python SDKs
  • Create Synthetic Data
    • Gretel Safe Synthetics
      • Transform
        • Reference
        • Examples
        • Supported Entities
      • Synthetics
        • Gretel Tabular Fine-Tuning
        • Gretel Text Fine-Tuning
        • Gretel Tabular GAN
        • Benchmark Report
        • Privacy Protection
      • Evaluate
        • Synthetic Quality & Privacy Report
        • Tips to Improve Synthetic Data Quality
        • Data Privacy 101
      • SDK
    • Gretel Data Designer
      • Getting Started with Data Designer
      • Define your Data Columns
        • Column Types
        • Add Constraints to Columns
        • Custom Model Configurations
        • Upload Files as Seeds
      • Building your Dataset
        • Seeding your Dataset
        • Generating Data
      • Generate Realistic Personal Details
      • Structured Outputs
      • Code Validation
      • Data Evaluation
      • Magic Assistance
      • Using Jinja Templates
  • Gretel Playground [Legacy]
    • Getting Started
    • Prompts Tips & Best Practices
    • FAQ
    • SDK Examples
    • Tutorials
    • Videos
    • Gretel Playground [Legacy] Inference API
    • Batch Job SDK
  • Reference
    • Gretel's Python Client
    • Gretel’s Open Source Synthetic Engine
    • Gretel’s REST API
    • Homepage
    • Model Suites
Powered by GitBook
On this page
  • Ads, Finance, Marketing
  • E-commerce
  • Employment
  • Energy, Telecom
  • Environment, Food
  • Government
  • Healthcare
  • Large Datasets

Was this helpful?

Export as PDF
  1. Create Synthetic Data
  2. Gretel Safe Synthetics
  3. Synthetics

Benchmark Report

Check out this Benchmark report, running Gretel models on popular ML datasets, indexed by industry

PreviousGretel Tabular GANNextPrivacy Protection

Last updated 1 month ago

Was this helpful?

Gretel Tabular Fine-Tuning consistently generates synthetic data with high on multiple types of tabular data, and Gretel Tabular GAN is great for particularly long or wide datasets.

Depending on your specific goals with synthetic data or constraints, you may find particular Gretel models to be best suited for your use case. You can reference the Benchmark report below to guide how you evaluate Gretel models, or of course, try Benchmark on your datasets.

The publicly available datasets used in this results leaderboard were sourced from the following ML dataset repositories: , , and .

Ads, Finance, Marketing

Input Data
Model
SQS
Data Privacy Score
Time (sec)
Size
Datatype
Cols
Rows

Tabular Fine-Tuning

84

83

1034.299

4.9 MB

tabular_mixed

21

41188

Tabular GAN

89

86

1080.329

4.9 MB

tabular_mixed

21

41188

Tabular Fine-Tuning

95

85

669.117

371 KB

tabular_mixed

17

4521

Tabular GAN

87

87

148.713

371 KB

tabular_mixed

17

4521

Tabular Fine-Tuning

93

53

2126.556

89 KB

time_series

16

750

Tabular GAN

60

97

62.725

89 KB

time_series

16

750

E-commerce

Input data
Model
SQS
Data Privacy Score
Time (sec)
Size
Datatype
Cols
Rows

Tabular Fine-Tuning

87

94

1334.324

2.4 MB

tabular_numeric

24

16519

Tabular GAN

78

95

444.495

2.4 MB

tabular_numeric

24

16519

Tabular Fine-Tuning

95

75

368.91

52 KB

tabular_numeric

7

1728

Tabular GAN

86

74

67.322

52 KB

tabular_numeric

7

1728

Tabular Fine-Tuning

83

97

507.772

5.6 MB

tabular_numeric

5

103886

Tabular GAN

87

77

868.921

5.6 MB

tabular_numeric

5

103886

Employment

Input data
Model
SQS
Data Privacy Score
Time (sec)
Size
Datatype
Cols
Rows

Tabular Fine-Tuning

93

91

874.715

1.9 MB

tabular_mixed

14

19158

Tabular GAN

91

91

417.622

1.9 MB

tabular_mixed

14

19158

Tabular Fine-Tuning

91

73

2008.613

274 KB

tabular_mixed

37

1470

Tabular GAN

75

89

98.267

274 KB

tabular_mixed

37

1470

Energy, Telecom

Input data
Model
SQS
Data Privacy Score
Time (sec)
Size
Datatype
Cols
Rows

Tabular Fine-Tuning

89

95

2277.711

11.4 MB

time_series

29

19735

Tabular GAN

75

84

653.85

11.4 MB

time_series

29

19735

Tabular Fine-Tuning

87

90

1805.024

1.7 MB

tabular_mixed

33

7043

Tabular GAN

80

91

265.678

1.7 MB

tabular_mixed

33

7043

Environment, Food

Input data
Model
SQS
Data Privacy Score
Time (sec)
Size
Datatype
Cols
Rows

Tabular Fine-Tuning

90

81

1144.394

822 KB

time_series

15

9357

Tabular GAN

69

86

214.324

822 KB

time_series

15

9357

Tabular Fine-Tuning

82

78

376.864

4 KB

tabular_numeric

5

150

Tabular GAN

78

58

56.388

4 KB

tabular_numeric

5

150

Tabular Fine-Tuning

92

90

775.856

90 KB

tabular_numeric

12

1599

Tabular GAN

66

92

60.729

90 KB

tabular_numeric

12

1599

Tabular Fine-Tuning

94

88

742.663

281 KB

tabular_numeric

12

4898

Tabular GAN

82

89

120.683

281 KB

tabular_numeric

12

4898

Government

Input data
Model
SQS
Data Privacy Score
Time (sec)
Size
Datatype
Cols
Rows

Tabular Fine-Tuning

89

65

2170.874

3 MB

tabular_numeric

28

21643

Tabular GAN

87

88

710.705

3 MB

tabular_numeric

28

21643

Tabular Fine-Tuning

90

79

815.833

3.6 MB

tabular_mixed

15

32561

Tabular GAN

92

80

683.149

3.6 MB

tabular_mixed

15

32561

Healthcare

Input data
Model
SQS
Data Privacy Score
Time (sec)
Size
Datatype
Cols
Rows

Tabular Fine-Tuning

92

53

723.425

18 KB

tabular_numeric

14

303

Tabular GAN

73

73

47.015

18 KB

tabular_numeric

14

303

Tabular Fine-Tuning

83

76

649.074

19 KB

tabular_numeric

11

699

Tabular GAN

75

78

47.237

19 KB

tabular_numeric

11

699

Large Datasets

Input data
Model
SQS
Data Privacy Score
Time (sec)
Size
DataType
Columns
Rows

Tabular Fine-Tuning

85

84

12805.043

75 MB

tabular_numeric

55

581012

Tabular GAN

92

81

3135.347

75 MB

tabular_numeric

55

581012

Tabular GAN

86

50

94297.403

311 MB

tabular_numeric

1349

27000

Tabular GAN

83

77

22133.246

743 MB

tabular_mixed

42

4898430

Tabular GAN

83

50

154719.489

421 MB

tabular_numeric

967

63360

Tabular Fine-Tuning

93

98

1353.606

154 MB

tabular_numeric

15

1446956

Tabular GAN

92

99

10106.598

154 MB

tabular_numeric

15

1446956

Tabular Fine-Tuning

99

87

511.645

24 MB

tabular_numeric

11

1000000

Tabular GAN

95

85

5350.631

24 MB

tabular_numeric

11

1000000

Tabular Fine-Tuning

99

89

445.614

614 KB

tabular_numeric

11

25010

Tabular GAN

91

90

419.063

614 KB

tabular_numeric

11

25010

Tabular Fine-Tuning

67

94

1608.793

262 MB

tabular_numeric

12

5749132

Tabular GAN

85

92

33233.547

262 MB

tabular_numeric

12

5749132

Tabular Fine-Tuning

92

92

570.957

38 MB

tabular_mixed

9

1017209

Tabular GAN

89

89

5040.424

38 MB

tabular_mixed

9

1017209

bank_marketing_large.csv
bank_marketing_large.csv
bank_marketing_large.csv
bank_marketing_large.csv
dow_jones_index.csv
dow_jones_index.csv
bike_sales.csv
bike_sales.csv
car_evaluation.csv
car_evaluation.csv
olist_order_payments.csv
olist_order_payments.csv
data_science_job_candidates.csv
data_science_job_candidates.csv
ibm_employee_attrition.csv
ibm_employee_attrition.csv
energydata_complete.csv
energydata_complete.csv
telco_customer_churn.csv
telco_customer_churn.csv
air_quality_uci.csv
air_quality_uci.csv
iris.csv
iris.csv
winequality_red.csv
winequality_red.csv
winequality_white.csv
winequality_white.csv
portuguese_election_data.csv
portuguese_election_data.csv
adult.csv
adult.csv
processed_cleveland_heart_disease_uci.csv
processed_cleveland_heart_disease_uci.csv
breast_cancer_wisconsin.csv
breast_cancer_wisconsin.csv
covtype
covtype
duck_duck_geese
kdd_cup_1999
pems_sf
phoneme_spectra
phoneme_spectra
poker_hand_large
poker_hand_large
poker_hand_small
poker_hand_small
record_linkage
record_linkage
rossman_store_sales
rossman_store_sales
UCI
Kaggle
HuggingFace
Synthetic Data Quality Score (SQS)