Benchmark Report
Check out this Benchmark report, running Gretel models on popular ML datasets, indexed by industry
You can use a Benchmark report like the one shown here to evaluate which Gretel model is best for your synthetic data goals.
For example, Gretel Tabular Fine-Tuning consistently generates synthetic data with high Synthetic Data Quality Score (SQS) on multiple types of tabular data, and Gretel ACTGAN is great for particularly long or wide datasets.
Depending on your specific goals with synthetic data or constraints, you may find particular Gretel models to be best suited for your use case. You can reference the Benchmark report below to guide how you evaluate Gretel models, or of course, try Benchmark on your datasets.
The publicly available datasets used in this results leaderboard were sourced from the following ML dataset repositories: UCI, Kaggle, and HuggingFace.
Ads, Finance, Marketing
Tabular Fine-Tuning
84
83
1034.299
4.9 MB
tabular_mixed
21
41188
Tabular GAN
89
86
1080.329
4.9 MB
tabular_mixed
21
41188
Tabular Fine-Tuning
95
85
669.117
371 KB
tabular_mixed
17
4521
Tabular GAN
87
87
148.713
371 KB
tabular_mixed
17
4521
Tabular Fine-Tuning
93
53
2126.556
89 KB
time_series
16
750
Tabular GAN
60
97
62.725
89 KB
time_series
16
750
E-commerce
Tabular Fine-Tuning
87
94
1334.324
2.4 MB
tabular_numeric
24
16519
Tabular GAN
78
95
444.495
2.4 MB
tabular_numeric
24
16519
Tabular Fine-Tuning
95
75
368.91
52 KB
tabular_numeric
7
1728
Tabular GAN
86
74
67.322
52 KB
tabular_numeric
7
1728
Tabular Fine-Tuning
83
97
507.772
5.6 MB
tabular_numeric
5
103886
Tabular GAN
87
77
868.921
5.6 MB
tabular_numeric
5
103886
Employment
Tabular Fine-Tuning
93
91
874.715
1.9 MB
tabular_mixed
14
19158
Tabular GAN
91
91
417.622
1.9 MB
tabular_mixed
14
19158
Tabular Fine-Tuning
91
73
2008.613
274 KB
tabular_mixed
37
1470
Tabular GAN
75
89
98.267
274 KB
tabular_mixed
37
1470
Energy, Telecom
Tabular Fine-Tuning
89
95
2277.711
11.4 MB
time_series
29
19735
Tabular GAN
75
84
653.85
11.4 MB
time_series
29
19735
Tabular Fine-Tuning
87
90
1805.024
1.7 MB
tabular_mixed
33
7043
Tabular GAN
80
91
265.678
1.7 MB
tabular_mixed
33
7043
Environment, Food
Tabular Fine-Tuning
90
81
1144.394
822 KB
time_series
15
9357
Tabular GAN
69
86
214.324
822 KB
time_series
15
9357
Tabular Fine-Tuning
82
78
376.864
4 KB
tabular_numeric
5
150
Tabular GAN
78
58
56.388
4 KB
tabular_numeric
5
150
Tabular Fine-Tuning
92
90
775.856
90 KB
tabular_numeric
12
1599
Tabular GAN
66
92
60.729
90 KB
tabular_numeric
12
1599
Tabular Fine-Tuning
94
88
742.663
281 KB
tabular_numeric
12
4898
Tabular GAN
82
89
120.683
281 KB
tabular_numeric
12
4898
Government
Tabular Fine-Tuning
89
65
2170.874
3 MB
tabular_numeric
28
21643
Tabular GAN
87
88
710.705
3 MB
tabular_numeric
28
21643
Tabular Fine-Tuning
90
79
815.833
3.6 MB
tabular_mixed
15
32561
Tabular GAN
92
80
683.149
3.6 MB
tabular_mixed
15
32561
Healthcare
Tabular Fine-Tuning
92
53
723.425
18 KB
tabular_numeric
14
303
Tabular GAN
73
73
47.015
18 KB
tabular_numeric
14
303
Tabular Fine-Tuning
83
76
649.074
19 KB
tabular_numeric
11
699
Tabular GAN
75
78
47.237
19 KB
tabular_numeric
11
699
Large Datasets
Tabular Fine-Tuning
85
84
12805.043
75 MB
tabular_numeric
55
581012
Tabular GAN
92
81
3135.347
75 MB
tabular_numeric
55
581012
Tabular GAN
86
50
94297.403
311 MB
tabular_numeric
1349
27000
Tabular GAN
83
77
22133.246
743 MB
tabular_mixed
42
4898430
Tabular GAN
83
50
154719.489
421 MB
tabular_numeric
967
63360
Tabular Fine-Tuning
93
98
1353.606
154 MB
tabular_numeric
15
1446956
Tabular GAN
92
99
10106.598
154 MB
tabular_numeric
15
1446956
Tabular Fine-Tuning
99
87
511.645
24 MB
tabular_numeric
11
1000000
Tabular GAN
95
85
5350.631
24 MB
tabular_numeric
11
1000000
Tabular Fine-Tuning
99
89
445.614
614 KB
tabular_numeric
11
25010
Tabular GAN
91
90
419.063
614 KB
tabular_numeric
11
25010
Tabular Fine-Tuning
67
94
1608.793
262 MB
tabular_numeric
12
5749132
Tabular GAN
85
92
33233.547
262 MB
tabular_numeric
12
5749132
Tabular Fine-Tuning
92
92
570.957
38 MB
tabular_mixed
9
1017209
Tabular GAN
89
89
5040.424
38 MB
tabular_mixed
9
1017209
Last updated
Was this helpful?