Benchmark Report

Check out this Benchmark report, running Gretel models on popular ML datasets, indexed by industry

You can use a Benchmark report like the one shown here to evaluate which Gretel model is best for your synthetic data goals.

For example, Gretel Tabular Fine-Tuning consistently generates synthetic data with high Synthetic Data Quality Score (SQS) on multiple types of tabular data, and Gretel ACTGAN is great for particularly long or wide datasets.

Depending on your specific goals with synthetic data or constraints, you may find particular Gretel models to be best suited for your use case. You can reference the Benchmark report below to guide how you evaluate Gretel models, or of course, try Benchmark on your datasets.

The publicly available datasets used in this results leaderboard were sourced from the following ML dataset repositories: UCI, Kaggle, and HuggingFace.

Ads, Finance, Marketing

Input Data
Model
SQS
Data Privacy Score
Time (sec)
Size
Datatype
Cols
Rows

Tabular Fine-Tuning

84

83

1034.299

4.9 MB

tabular_mixed

21

41188

Tabular GAN

89

86

1080.329

4.9 MB

tabular_mixed

21

41188

Tabular Fine-Tuning

95

85

669.117

371 KB

tabular_mixed

17

4521

Tabular GAN

87

87

148.713

371 KB

tabular_mixed

17

4521

Tabular Fine-Tuning

93

53

2126.556

89 KB

time_series

16

750

Tabular GAN

60

97

62.725

89 KB

time_series

16

750

E-commerce

Input data
Model
SQS
Data Privacy Score
Time (sec)
Size
Datatype
Cols
Rows

Tabular Fine-Tuning

87

94

1334.324

2.4 MB

tabular_numeric

24

16519

Tabular GAN

78

95

444.495

2.4 MB

tabular_numeric

24

16519

Tabular Fine-Tuning

95

75

368.91

52 KB

tabular_numeric

7

1728

Tabular GAN

86

74

67.322

52 KB

tabular_numeric

7

1728

Tabular Fine-Tuning

83

97

507.772

5.6 MB

tabular_numeric

5

103886

Tabular GAN

87

77

868.921

5.6 MB

tabular_numeric

5

103886

Employment

Input data
Model
SQS
Data Privacy Score
Time (sec)
Size
Datatype
Cols
Rows

Tabular Fine-Tuning

93

91

874.715

1.9 MB

tabular_mixed

14

19158

Tabular GAN

91

91

417.622

1.9 MB

tabular_mixed

14

19158

Tabular Fine-Tuning

91

73

2008.613

274 KB

tabular_mixed

37

1470

Tabular GAN

75

89

98.267

274 KB

tabular_mixed

37

1470

Energy, Telecom

Input data
Model
SQS
Data Privacy Score
Time (sec)
Size
Datatype
Cols
Rows

Tabular Fine-Tuning

89

95

2277.711

11.4 MB

time_series

29

19735

Tabular GAN

75

84

653.85

11.4 MB

time_series

29

19735

Tabular Fine-Tuning

87

90

1805.024

1.7 MB

tabular_mixed

33

7043

Tabular GAN

80

91

265.678

1.7 MB

tabular_mixed

33

7043

Environment, Food

Input data
Model
SQS
Data Privacy Score
Time (sec)
Size
Datatype
Cols
Rows

Tabular Fine-Tuning

90

81

1144.394

822 KB

time_series

15

9357

Tabular GAN

69

86

214.324

822 KB

time_series

15

9357

Tabular Fine-Tuning

82

78

376.864

4 KB

tabular_numeric

5

150

Tabular GAN

78

58

56.388

4 KB

tabular_numeric

5

150

Tabular Fine-Tuning

92

90

775.856

90 KB

tabular_numeric

12

1599

Tabular GAN

66

92

60.729

90 KB

tabular_numeric

12

1599

Tabular Fine-Tuning

94

88

742.663

281 KB

tabular_numeric

12

4898

Tabular GAN

82

89

120.683

281 KB

tabular_numeric

12

4898

Government

Input data
Model
SQS
Data Privacy Score
Time (sec)
Size
Datatype
Cols
Rows

Tabular Fine-Tuning

89

65

2170.874

3 MB

tabular_numeric

28

21643

Tabular GAN

87

88

710.705

3 MB

tabular_numeric

28

21643

Tabular Fine-Tuning

90

79

815.833

3.6 MB

tabular_mixed

15

32561

Tabular GAN

92

80

683.149

3.6 MB

tabular_mixed

15

32561

Healthcare

Input data
Model
SQS
Data Privacy Score
Time (sec)
Size
Datatype
Cols
Rows

Tabular Fine-Tuning

92

53

723.425

18 KB

tabular_numeric

14

303

Tabular GAN

73

73

47.015

18 KB

tabular_numeric

14

303

Tabular Fine-Tuning

83

76

649.074

19 KB

tabular_numeric

11

699

Tabular GAN

75

78

47.237

19 KB

tabular_numeric

11

699

Large Datasets

Input data
Model
SQS
Data Privacy Score
Time (sec)
Size
DataType
Columns
Rows

Tabular Fine-Tuning

85

84

12805.043

75 MB

tabular_numeric

55

581012

Tabular GAN

92

81

3135.347

75 MB

tabular_numeric

55

581012

Tabular GAN

86

50

94297.403

311 MB

tabular_numeric

1349

27000

Tabular GAN

83

77

22133.246

743 MB

tabular_mixed

42

4898430

Tabular GAN

83

50

154719.489

421 MB

tabular_numeric

967

63360

Tabular Fine-Tuning

93

98

1353.606

154 MB

tabular_numeric

15

1446956

Tabular GAN

92

99

10106.598

154 MB

tabular_numeric

15

1446956

Tabular Fine-Tuning

99

87

511.645

24 MB

tabular_numeric

11

1000000

Tabular GAN

95

85

5350.631

24 MB

tabular_numeric

11

1000000

Tabular Fine-Tuning

99

89

445.614

614 KB

tabular_numeric

11

25010

Tabular GAN

91

90

419.063

614 KB

tabular_numeric

11

25010

Tabular Fine-Tuning

67

94

1608.793

262 MB

tabular_numeric

12

5749132

Tabular GAN

85

92

33233.547

262 MB

tabular_numeric

12

5749132

Tabular Fine-Tuning

92

92

570.957

38 MB

tabular_mixed

9

1017209

Tabular GAN

89

89

5040.424

38 MB

tabular_mixed

9

1017209

Last updated

Was this helpful?